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Abstract. We analyze by means of extensive computer simulations the out of equilibrium dynamics of
Edwards-Anderson spin glasses in d = 4 and d = 6 dimensions with ±J interactions. In particular, we
focus our analysis on the scaling properties of the two-time autocorrelation function in a wide range of
temperatures from T = 0.07Tc to T = 0.75Tc in both systems. In both the 4d and 6d models at very low
temperatures we study the effects of discretization of energy levels. Strong sub-aging behaviors are found.
We argue that this is because in the times accessible to our simulations the systems are only able to probe
activated dynamics through the lowest discrete energy levels and remain trapped around nearly flat regions
of the energy landscape. For temperatures T ≥ 0.5Tc in 4d and 6d we find logarithmic scalings that are
compatible with simple dynamical ultrametricity. Nevertheless the behaviour of the systems, even in 6d is
very different from the mean field SK model results.

PACS. 75.10.Nr Spin-glass and other random models

1 Introduction

After more than twenty years of extensive research, the
physics of spin glasses is still far from being completely un-
derstood. The inherent complexity of the physical scenario
together with unsurmountable mathematical difficulties
undermine even the simplest theoretical approaches that
attempt to include basic realistic ingredients. Notwith-
standing that a large amount of information could be ex-
tracted from the analysis of the mean field model (i.e.
the Sherrington-Kirkpatrick model [1,2]), the extension of
those results to finite dimensional spin glasses remains a
matter of hard controversy in the statistical physics com-
munity [3,4]. In this context large scale numerical simula-
tions emerged as a valuable aid in gaining physical insight
into more realistic models [5,6]; however, they pose such
a serious demand over existent computational capabilities
that the study of the low temperature phases of these sys-
tems may be considered in many respects to be still in an
exploratory state.

Regarding the out of equilibrium behavior of finite di-
mensional spin glasses, much attention has been devoted
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to models with continuous couplings distributions [6,7].
One important feature of these systems is that the ground
state is unique. For Gaussian couplings, the aging behav-
ior of models in 3d and 4d reported in the literature seems
to be compatible with the simple aging or weak sub-aging
scenarios (to be defined below). These particular scenar-
ios suggest a rather simple phase space structure with a
unique relevant time scale, namely the age of the system.
This apparently simple behavior could be a consequence
of the existence of strongly separated temporal scales. Be-
cause of this during the time span of a simulation or ex-
periment at very low temperatures the system could not
be able to cross over between different time regimes and
only one relevant time scale is probed.

One may wonder whether the relatively simple dynam-
ical behavior observed in spin glasses with continuous dis-
tributions at very low temperatures can also be expected
in systems with discrete couplings, which present a strong
degeneracy of their ground states as well as a noticeable
discretization of their low-energy spectrum. That might
lead to very low temperature effects that could not be
observable in continuous spin glasses.

It is known that at temperatures relatively close to Tc

there is no qualitative difference in the phenomenologi-
cal characterization of aging [10] between the continuous
and discrete couplings systems. However, at lower tem-
peratures, effects deriving from the discrete nature of the
energy spectrum as well as from the high degeneracy of the
ground states may become apparent in discrete models.
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Scaling properties contribute to a quantitative descrip-
tion of complex phenomena, even in cases where a general
theory is lacking [3,11,12]. In this respect, different dy-
namical universality classes may emerge for which similar
scaling functions describe the dynamics of different sys-
tems. The knowledge of these scaling rules gives consider-
able insight into the nature of the underlying dynamical
processes.

In this paper we present the results of an extensive
numerical study of the aging dynamics and scaling prop-
erties of the two-time autocorrelation functions for the ±J
Edwards-Anderson spin glasses in dimensions d = 4 and
d = 6 at temperatures which cover the whole low temper-
ature phases of the models.

At the very low temperatures T = 0.07Tc and T =
0.15Tc we find strong sub-aging scenarios both in 4d
and 6d. In particular, for the lowest temperature we find
a small exponent indicative of a rather quick relaxation
to a stationary dynamics. At first sight this seems hard
to reconcile with the expected very slow relaxation which
takes place at these extremely low temperatures. Never-
theless this can be seen as a consequence of the discrete
nature of energy levels which can produce some non triv-
ial time dependent phenomena at very low temperatures
at time scales roughly independent of the waiting time tw.
The systems simply do not have enough time to relax over
barriers dependent on tw. So this dynamics is completely
different from the usual long time non-equilibrium relax-
ation but is not trivial due to the discreteness of the low
lying energy levels. At T = 0.5Tc we observe logarith-
mic scalings both in 4d and 6d which are compatible with
dynamic ultrametricity. At this temperature simple aging
scalings are also compatible with the numerical data al-
though not as good as logarithmic scalings. As d = 6 is the
upper critical dimension we expected the relaxational dy-
namics should present some features of the infinite range
SK model. We find insted that the behavior is more sim-
ilar to that at lower dimensions than to the mean field
model.

The paper is organized as follows: in Section 2 we de-
fine the model studied and the observables measured; in
Section 3 we analyze the results of the 4d and 6d models
respectively. Finally the conclusions and a discussion are
presented in Section 4.

2 Model and method

The system consists of a d-dimensional hypercubic lattice
of Ising spins which interact according to the following
Hamiltonian:

H = −
∑
〈i,j〉

JijSiSj , (1)

where the symbol 〈i, j〉 indicates that only first neigh-
bor pairs i, j are taken into account. The coupling con-
stants Jij are binary random variables chosen from the
following probability distribution:

ρ(Jij) =
1
2

(
δ(Jij − 1) + δ(Jij + 1)

)
. (2)

The time evolution of the model is governed by a standard
heat-bath Monte Carlo process with sequential random
update. The imposed boundary conditions were periodic
in 4d and helical in 6d [13]. In the practical implementa-
tion of the numerical algorithm a significant increase in
speed was accomplished by using multi-spin coding [13]
so each spin and coupling constant demand just one bit
of information each for storage. In this way we can run
many replicas at the same time at the cost of a single
realization. In all cases the dynamics is initiated from a
random configuration, simulating a sudden quench from
infinite temperature into the spin glass phase.

One straightforward way to characterize the out of
equilibrium dynamics of complex magnetic systems is
through the analysis of the two-time autocorrelation func-
tion C(t, t′), which can exhibit history dependent fea-
tures usually referred to as aging. A system that has at-
tained thermodynamic equilibrium will show a stationary
dynamics for which only time differences make physical
sense, and therefore C(t, t′) ≡ C(t−t′). However, complex
magnetic systems such as spin glasses show a much more
complex behavior due to the presence of an extremely
slow relaxational dynamics. These materials may be out
of equilibrium for spans of time longer than any avail-
able time scale in the laboratory. In this circumstances
insight into the ongoing processes can be obtained by
studying the scaling properties of dynamical quantities
like C(tw + t, tw), where the waiting time, tw, stands for
the age of the system measured after a quench into the
spin glass phase, and t stands for the time measured since
the age tw.

In the numerical experiments we compute the quantity

C(tw + t, tw) =

[
1
N

N∑
i=1

Si(tw + t)Si(tw)

]
av

, (3)

where we have denoted by [. . .]av an average taken over
several realizations of the random couplings and thermal
histories. An additive form for the autocorrelations was
assumed:

C(tw + t, tw) = Cst(t) + Cag

(
h(tw + t)

h(tw)

)
· (4)

The stationary part Cst(t) is well described by an alge-
braic decay of the form Cst(t) = At−x(T ) + q. There is
no theoretical basis for determining the scaling function
h(z) appearing in the aging part of the autocorrelations.
Some possibilities have been proposed which describe rea-
sonably well both numerical and experimental data [14].
Experimental data can be accounted for with a scaling
function of the form:

h(t) = exp

[
1

1 − µ

(
t

τ

)1−µ
]

(5)

with τ a microscopic time scale. This form can interpo-
late from the so called sub-aging relaxation when µ < 1
to the super-aging relaxation when µ > 1 including the
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Fig. 1. Two-time autocorrelation function for the ±J spin
glass in d = 4 with linear size L = 12 after a quench to T =
0.07Tc in a double logarithmic plot. The waiting times are tw =
2k, k = 14 . . . 19 from bottom to top. Inset: the result of a
microcanonical run after tw for the three longest tw’ s.

commonly observed simple aging for µ = 1 [15]. In the
case µ = 0 a stationary dynamics is recovered. We will
see that this form works well for our data at the lowest
temperatures implying a strong sub-aging scenario with
an effective relaxation time of the order of tµw. Another
functional form which has also been used to fit data is the
enhanced power law:

h(t) = exp [(ln (t/τ))a] (6)

which for a > 1 implies sub-aging. We have found that
these scaling functions work well for the whole range of
temperatures studied in both 4d and 6d although at T =
0.5Tc an ultrametric logarithmic scaling works slightly
better.

3 d = 4

The simulations of the four dimensional Edwards-
Anderson model were done for systems of linear size
L = 12 (T = 0.07Tc) and L = 10 imposing periodic
boundary conditions. We recall that the critical tempera-
ture for this model has been estimated to be Tc ≈ 2 [8,9].

3.1 Very low temperatures: probing the discreteness
of the lowest energy levels

In Figure 1 we show the behavior of the two-time au-
tocorrelation function C(tw + t, tw) at the temperature
T = 0.07Tc. The waiting times are tw = 2k, k = 14 . . . 19,
and the simulation was run up to t = 107 MCS. There is
a weak dependence on the waiting time and the system
seems to relax to a stationary regime presenting a strong
sub-aging behavior.
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Fig. 2. Sub-aging scaling for the long time regime of the data
shown in Figure 1. The stationary decay of the correlations has
been subtracted, fit parameters are A = 0.04 and x = 0.57. The
sub-aging exponent is µ = 0.4 and τ has been arbitrarily fixed
to one.

In Figure 2 we show the best scaling obtained for the
long time behavior of the autocorrelation function after
subtraction of the stationary part:

Cst(T ) = At−x(T ) + q. (7)

In this particular case, the best fit was obtained for
x(T ) = 0.57 (a rather high value) and q ≈ 0.93. In the
long time regime, the (weakly) tw dependence can be well
collapsed by the form (5) with a characteristic exponent
µ = 0.4. This is a strong sub-aging behaviour. An en-
hanced power law of the form (6) works also very well
with an exponent a = 9.

The observation of these sub-aging regimes at this
very low temperature is consequence of the discrete na-
ture of the low lying energy levels. In fact the smallest
time scale for activation in this energy landscape is of the
order of exp (2/T ) ≈ 1, 6×106 which is approximately the
time where the correlation leaves the quasi-equilibrium
regime (see Fig. 1). Up to this time scale the system re-
laxes effectively in the flat energy landscape defined by
the sites with zero local field which are free to flip (be-
sides a smaller group which can still contribute to lower-
ing the energy). Note that the value of the correlation in
the plateau C = q in this regime does not correspond to
the equilibrium order parameter qEA but instead to one
minus the fraction of sites with zero field [23]. After a time
of the order of exp (2/0.07) thermal activation begins to
take place through the lowest lying barriers and the cor-
relations decay to zero as the system expands its available
phase space. As a further test for this interpretation we
have performed a set of simulations in a microcanonical
ensemble which are shown in the inset of Figure 1: for
the three longest waiting times we have allowed the sys-
tem to relax up to tw and from then on only flips of spins
with zero local fields were allowed. In these conditions
the correlations decayed only to the plateau suggesting
that the long time decay in the canonical dynamics was
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Fig. 3. Interrupted aging scaling for the intermediate time
regime of the data shown in Figure 1. This time regime is char-
acterized by an interrupted aging exponent µ = 0.27 higher
than the corresponding one seen in the asymptotic regime of
Figure 2.

produced by activation over low energy barriers. The sce-
nario for this behavior is quite clear: after a long waiting
time, the system diffuses further in a flat energy landscape
surrounded by barriers of minimum height ∆E = 2. At
time scales of the order of exp (2/T ) it can further relax
by thermal activation over these low barriers. The next
level is at τ � exp (4/T ) ≈ 2, 56 × 1012 and it is clearly
unreachable. The simplicity of the landscape seen by the
system at this temperature explains the behaviour similar
to interrupted aging which is observed.

In Figure 4 we present the results of a simulation per-
formed at a higher temperature (though still very low)
T = 0.15Tc. At this temperature in the time range of the
simulation the system is able to probe activation over bar-
riers of height ∆E = 2 and ∆E = 4. The waiting times
are tw = 5 000, 10 000, 50 000 and 200 000. The data can
still be well collapsed for large values of t by a sub-aging
scaling of the form (5), with an exponent µ ≈ 0.7. The
sub-aging behaviour is getting weaker as the temperature
is raised.

3.2 Full aging dynamics

As the thermal energy is raised above the lowest lying lev-
els the full ruggedness of the landscape should emerge and
true aging dynamics should be restored. What happens
when the thermal energy is enough to turn discrete energy
levels undetectable? In Figure 5 we see the autocorrela-
tions for a temperature T = 0.5Tc for three waiting times
tw = 10 000, 50 000, 100 000. A fit to the quasi-equilibrium
region gives x(T ) = 0.1 and q = 0.62, indicating a very
slow relaxation. This is due to the increasing complexity
of the phase space visited at this temperature. The best
scaling form obtained for the aging regime is presented
in Figure 6 and corresponds to the following logarithmic
form:

Cag(tw + t, tw) = C
( ln t

ln tw

)
· (8)
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Fig. 4. Sub-aging scaling for the asymptotic regime of the d=4
Edwards-Anderson model at T = 0.15Tc with linear size L =
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and 200 000. The fitting parameters of the stationary regime
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sub-aging exponent is µ = 0.7.
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Fig. 5. Two-time autocorrelation function for the ±J spin
glass in d = 4 with linear size L = 10 after a quench to T =
0.5Tc. The waiting times are tw = 10 000, 50 000 and 10 0000.

Note that there is still an intermediate regime which is not
well described by this logarithmic scaling but the corre-
sponding time window is too small to try a reasonable col-
lapse there. On the other side, in the long time regime the
logarithmic scaling (8) works remarkably well. It is worth
noting that this form of the scaling function is compati-
ble with dynamical ultrametricity (see [17]). This form is
slightly different from that expected by a droplet like sce-
nario, which takes the form ln (t + tw)/ ln (tw) and does
not obey ultrametricity. This new evidence for a (weak)
ultrametricity obtained directly from aging measurements
is in agreement with recent results for the same model
obtained from a quite different approach [18]. Neverthe-
less a simple aging scaling of the form C(t/tw) also works
well for the two largest waiting times and cannot be dis-
carded although the overall behaviour of the ultrametric
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Fig. 6. Logarithmic aging scaling for the asymptotic time
regime of the data shown in Figure 5. Fit parameters are A =
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scaling is better. We have also done simulations at temper-
ature T = 0.75Tc (not shown) and the results are compat-
ible with the logarithmic scaling (8) although due to the
strong noise at this rather high temperature the data is
not so clean as at lower temperatures and the scaling of the
curves is not so good. At high temperatures several time
scales are mixed or superposed because of thermal noise
and consequently it is difficult to obtain reliable scalings.

3.3 d = 6

We have done a similar analysis of the data obtained for
the d = 6 Edwards-Anderson model. As this model is at
the upper critical dimension we expected to see a behavior
similar to the mean field or Sherrington-Kirkpatrick (SK)
model [16,19,20]. The off equilibrium dynamics of the SK
model is only poorly understood due to the complexity
which emerges from the full replica symmetry breaking
which is the central characteristic of that model. As a con-
sequence of the complex ultrametric organization of time
scales no simple scaling form can be found for the aging
dynamics which might be described by a superposition of
scaling regimes of the form [16]:

Cag(tw + t, tw) =
∑

i

Ci

(hi(tw + t)
hi(tw)

)
· (9)

Nevertheless we have found a much simpler scenario
which is in fact very similar to what is observed in d = 3
and d = 4. The transition to an SK like aging scenario
seems to be very slow as the connectivity of the system
grows.

All these simulations were carried out for systems with
linear size L = 5. It is worth noting that the computa-
tional time required for simulating these systems increases
as L6, making it much more difficult to use larger values
of L. The critical temperature of this model was estimated
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in [21,22] to be Tc � 3. Here again we start by considering
the very low temperature case T = 0.07Tc.

The overall behavior of the two-time autocorrelation
function is similar to that described for dimension d = 4.
In Figure 7 we show the best scaling obtained for the
long time behavior of the autocorrelation after subtrac-
tion of the stationary part. The plots correspond to the
three longest waiting times: tw = 215, 217 and 219. The fit-
ting in the quasi-equilibrium regime yielded x(T ) = 0.55
and q � 0.96, similar to those found for d = 4 at the same
temperature. The long time aging regime can be well col-
lapsed with a sub-aging scaling of the form (5) with an
exponent µ = 0.65. It is also evident from the figure the
presence of an intermediate regime which was not possible
to collapse with scaling functions of the form (5) nor (6).

In Figure 8 we present the results of simulations at T =
0.15Tc. In this case all the data can be very well collapsed
by a unique sub-aging scaling form (5) with µ = 0.97. It is
apparent that the dynamics of the model in d = 6 is slower
than the corresponding dynamics in d = 4 at the lowest
temperatures. Already at the very low temperature T =
0.15Tc the d = 6 model is aging with a scaling behaviour
very near simple aging observed in many other systems.

At T = 0.5Tc the situation is also similar to what we
found in d = 4. The best scaling of the whole data set
is shown in Figure 9 where the ultrametric form (8) was
used. Again the data in the long time aging regime is also
compatible with a simple aging scenario.

In summary, as mentioned at the beginning of this sec-
tion the d = 6 model presents an aging dynamics very
similar to the d = 4 case at corresponding temperatures
and it seems to be still far from the limit of the mean field
system studied in [19,20].

4 Discussion and conclusion

In this paper we have presented an extensive numerical
study of the out of equilibrium dynamics of spin glasses
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with discrete couplings defined on hypercubic lattices in 4
and 6 dimensions, for very low temperatures T = 0.07Tc,
T = 0.15Tc and T = 0.5Tc.

The relaxation behavior of the model with ±J cou-
plings is different from that with continuous Gaussian cou-
plings. While the observed aging dynamics of the Gaussian
model is described in a wide range of temperatures and
time scales by simple aging or weak interrupted aging scal-
ings, the observed behavior of the ±J model seems to de-
part from that. At the lowest temperatures studied, that is
for T = 0.07Tc and T = 0.15Tc, the thermal energy is still
not enough to permit activation over several scales and
only the lowest lying energy levels are probed. As a con-
sequence the system diffuses on a flat energy landscape
surrounded by low barriers of height 2 or at most 4. It
relaxes in this simple landscape presenting a rapid relax-
ation to stationarity similar to interrupted aging although
the system if very far from equilibrium time scales. In this
sense these relaxations are practically independent of tw
and true aging is restored only at higher temperatures. In
order to see true aging at these very low temperatures we
would have to wait for extremely long times. At T = 0.5Tc

both in d = 4 and d = 6 the full aging is restored, no more
signs of strong sub-aging are seen but a slower logarith-
mic scaling is observed. A very weak sub-aging scenario
(µ ≤ 1) is also compatible with the data. At this interme-
diate temperature range thermal energy is large compared
with the low lying energy states which were important at
the lower temperatures. Consequently the aging dynamics
proceeds slowly but with the tendency of restoring ergod-
icity and equilibrium as tw grows. We noted that for rea-
sonably high temperatures T = 0.5Tc, and T = 0.75Tc the
best scaling was logarithmic but a simple aging scenario is
slightly worse and cannot be discarded. The logarithmic
aging observed at these temperatures points to a simple
hierarchy of time scales with dynamical ultrametricity as
observed in [18]. Nevertheless it is clear that it is very hard
to decide which is the correct scaling form within the time
scales presently available in computer simulations.
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Fig. 9. Logarithmic scaling for the two-time autocorrelation
functions of the d = 6 Edwards-Anderson spin glass at T =
0.5Tc. Fit parameters are A = 0.34 and x(T ) = 0.16 and q =
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On the other hand, even for the model in d = 6, which
is at the upper critical dimension, the qualitative form of
the aging curves and the scaling functions are very dif-
ferent from those found in the SK model [19] and in the
Hopfield model [20] which are known to present full replica
symmetry breaking and a consequently full hierarchical or
ultrametric organization of time scales [16]. In this respect
it is worth citing recent work by Yoshino, Hukushima
and Takayama [12] where they presented an extended ver-
sion of the dynamical droplet theory. Two interesting new
predictions are the presence of a new dynamical order
parameter qD < qEA which should be observed in a par-
ticular length/time scaling regime and the distinction be-
tween the times at which time translation invariance and
the Fluctuation-Dissipation theorem are violated. The au-
thors presented numerical results on the d = 4 ±J spin
glass to support their findings but clearly more precise
measurements are needed in order to test the theoretical
predictions. In particular, scaling functions depend on the
growth law of the coherence length L(t) which permits to
see the crossover between critical to activated dynamics.
Unfortunately this information is still not available for the
temperatures and time scales reached in our simulations
which we think are necessary in order to clearly see the
separation of time regimes during aging dynamics. We ex-
pect new interesting results to come from these kind of
analysis in the near future.
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